
Subsumption-based Architecture for

Autonomous Movement Planning for Planetary Rovers

N95- 23690
Shinichi Nakasuka and Seikoh Shirasaka

Department of Aeronautics and Astronautics, University of Tokyo

Hongo 7, Bunkyo-ku, Tokyo 113, JAPAN

TEL: +81-3-3812-2111 ext.6590 FAX: +81-3-3818-7493

e-mail: nakasuka@space.t.u-tokyo, ac.jp

KEY WORDS AND PHRASES unknown obstacles, gather geographical infor-

mation, and re-plan the path to the goal. This

Autonomy, machine learning, planetary rover, kind of flexibility will be needed in many other

subsumption architecture planning activies of the planetary rovers as

ABSTRACT well.

The paper proposes a new architecture for

autonomously generating and managing move-

ment plans of planetary rovers. The system

utilizes the uniform representation of the in-

stantaneous subgoals in the form of virtual sen-

sor states and the autonomous generation of

the subsumption type plan network, which are

expected to lead to the capability to persue

the overall goal while efficiently managing var-

ious unpredicted anomalies in a partially un-

known, ill-structured environment such as a

planetary surface.

INTRODUCTION

Among the autonomous functions required

for future unmanned planetary rovers, the one

especially required for such rovers will be the

capabiliy to generate and manage various move-

The paper proposes a novel architecture for

autonomously generating and managing such

movement plans of planetary rovers. The ar-

chitecture is, basically, similar to the well-known

subsumption architecture (Fig.I)[1] in the sense

that the finally obtained movement plans are

represented in the form of a hierachical su-

pression/promotion network of primitive reflex

actions such as "moving towards a prescribed

point", "wandering about", "moving towards

the reverse direction when a certain touch sen_r

senses an obstacle", and so on. This repre-

sentation of plans is, as has been discussed in

many literatures, superior in 1) robustness in

the actual world because no "symbolic world

model" is utilized, 2) real-timeness because no

complicated symbolic manipulation is required,

and 3) easiness in system integration and ex-

ment plans under partially unknown, ill-structured [
Reflex Pattern 3

environments. For example, the path planning [. ' 11Suppress

will be made based on the maps of the planet _ I I _/Pro=ote
[[Reflex Pattern 2[I " I

which will have been obtained beforehand by / ' • , [Suppress I
the observation from the planetary orbit, but [l I _/Promote

will be in many cases lots of obstacles (such _

as small rocks or gaps) not represented on the [Sensing I I Aetuat[°n]
maps. The path planning system, therefore,

must be flexible enough to compensate for the l Real Y/orld |

inaccuracy of the maps, quickly respond to the _...

unpredicted events such as collisions with the Figure 1.Subsumption Architecture

91

tension because a bottom-up-type system con-

struction is quite easy. For this reason, this

architecture is quite suit with the plan repre-

sentation schema for rovers which move in an

unstructured world. Its most significant de-

parture from the conventional system concept

is that the goal of the plan is not represented

explicitly, but is achieved during the course

of the interactions between the reflex actions'

network (called "RAN" hereafter) and the en-

Move forward Camera

,,'-,I,' ,-q 'X',,

/ I Sensitive to

I] T'° Directi°ns

Move Backward Right Left

vironment. This feature is called "emergent Figure 2.Schematic View of the Example Roverfunctionality".

This architecture, however, has some diffi-

cult problems to be solved before the actual

use, such as; 1) the RAN must be sophisticat-

edly designed by human designers so that the

emergent functionality achieves the given goal,
which is far more difficult task than to build

a system which deals with the goal explicitly,

and 2) once coded, the network is fixed during

the actual operations, and the change of the

environment or system itself cannot be dealt

with. From these shortcomings, it can be said

that the subsumption architecture cannot be

employed in its original form for our objectives.

We modified and enhanced the subsump-

tion architecture in the following three points:

l) uniform representation of the instantaneous

subgoals is introduced in the form of virtual

sensors so that the goal can be more explicitly

persued, 2) the RAN is automatically gener-

ated by compiling the database of the actions'

behavior networks obtained by machine learn-

ing, and 3) the RAN is modified during the ac-

tual operations to cope with the changes of the

system and environment. The resultant sys-

tem is expected to have the capability to per-

suit the overall goal while efficiently and more

flexibly managing various unpredicted anoma-

lies in a partially unknown, ill-structured en-

vironment such as a planetary surface.

In the following explanation, it is assumed

an example task to fetch a certain object which

is placed at a certain position (not at the rover

position) and to carry it to a prescribed goal

position. The rover is assumed to have four

touch sensors (each is sensitive to two direc-

tion forth) and one camera, and be able to turn

right/left and move forward/backward as illus-

trated in Fig.2. It is assumed the rover knows

its current position and orientation.

NEW ARCHITECTURE

Virtual Sensor States

Various actions are uniformly represented in

the form of change of sensor outputs. In order

for the high-level tasks such as "Plan Path"

or "Write Obstacle Position to Map" to be

represented in the same way, the state such

as "whether the map is updated or not" or

"whether there are no obstacles between the

current target and the rover position" has also

been represented as one "virtual" sensor state.

For the example task, the eight sensor states

(including three virtual sensor states) such as

35 Xl. Head Angle from the Goal Direction

(0 - 360')
i0 Xa. Distance from the Goal

0 X3. Head Anglo from the Object Direction

(0 - 360")
0 X_. Distance from the Object

3 Xs. Touch Sensor Output (0 = 8)

(2 directions x 4 sensors: 0 for no touch)

1 Xs. Object Carried ?
(0 for Yes and 1 for go)

1 X_. He Obstacles beteeen Target and Current Position ?

(0 for No and 1 for Yes)

l _t. Map Updated ?

(0 for Yes and 1 for No)

Exaaple (Sensor State')

Figure 3. Content of Sensor States

92

in Fig.3 are employed (called Xx ,-, Xs.) The

goal state for the example problem can be rep-

resented as (*0 * 0 * 0 * ,)Z.

Learning of Behavior Network

The plan management system learns when

a certain action can be applied and how the

action changes the sensor state. During the

learning phase, the rover chooses actions ran-

domly, which is continued until at least one

of the sensor state changes. The change of

the sensor state is defined as follows; for the

discrete-value type states (such as X5 "-_ X8),

any changes of the value, and for the continuous-

value type states (the other states), transitions

of the value between positive, negative and

zero. Examples are described in the leftmost

state transitions of Fig.4. These transitions

are translated into the more abstract form of

state transitions (the middle forms of Fig.4)

and stored in the database. In this figure, the

% (wild card) " means an arbitrary value, ">"

means a positive value and "**" means that

the value has not been changed from the one

before the action is taken.

After accumulating large amount of such

data for each action, the conventional induc-

tive learning algorithm is applied to yield gen-

eralized form of state transition of the action

(such as the rightmost form of Fig.4.) The

35

50

60

10

0

0

1

0

5

2

20

2O

0

i

0

0

0 >

50 *

25 *

I0 *

0 0

1 1

0 0

Transformed to

°l
2 *

5 *

20 *

- 0 -]_ 0
1 i

0 0

0 0

0

**

0

I *

0 *

Generalized *

to 0

0 *

,, ,

, o
0

1

0

0

Figure 4.Acquisition and Generalization of
Behavior Network

0

$*

0

0

employed generalization rules include "turn-

ing a constant into a variable" rule, and "con-

strain* deletion" rule. If the generalization be-

tween the current representation and the new

instance would result in a trivial state transi-

tion (such as that all the states are represented

as *), a disjunctive generalization is also intro-

duced. Finally, several disjunctive representa-

tions are obtained for each action. These state

transitions are called "Behavior Networks" in

this paper.

Higher level actions such as path planning

also have the behavior networks. As these net-

works are hard to learn and can be easily de-

fined beforehand, they are specified by the sys-

tem designer. The anomalous events during

the actual movements such as collisions with

obstacles are also defined as state transitions.

Compilation of Behavior Networks

After behavior networks of all the actions

become mature, they are compiled into a sub-

sumption type plan network. The major tasks

of this compilation are the identifications of
sensor stimuli for each action to be fired and

the extraction of priority relationships between

the actions. The following rules are observed

in constructing the plan network.

(1) Actions are defined in the form of "con-

tinue action A1 until Xk becomes a certain

constant c." Therefore, for the "turn right"

action, several variations of actions are gener-

ated such as "turn right until tile head angle

from the goal direction becomes zero" or "turn

right until touch sensors sense no forth", and

so on.

(2) The actions whose consequences match

the goal state are considered as candidates of

the lowest level of the plan network.

(3) If taking a certain action (say A1) re-

quires that a certain state be a certain value

(0 or other integers), then the action (say

A2) whose consequences satisfy this precon-

dition is categorized as a candidate of action

93

which must be performed before A1 (in other

word, whose firing suppresses the activation of

A1.) The preconditions of A1 which are not

explicitly satisfied by A2 are registered as the

stimuli for firing A1. Then all the consequence

states of A2 are matched with the precondition

states of A1, and the precondition states of A2

are replaced with the values obtained by this

matching.

(4) Many hierarchical relationships will be

acquired in the above processes. From these,

the best plan network is obtained by searching

the space of all the combinations, based on the

following criteria;

- The network does not have any loops.

- The network can lead the system to the

goal state from arbitrary states.

Figure 5 describes the obtained plan net-

work for the example problem. In this figure,

the wave line shows the "Supression Signal."

For example, the action "MF(X4=0)" (stands

Xs-l 10: Write Obstacle

to the Map

X7=1 PP: Plan Path to

the Goal

Xs-4 or 6 TR (Xs-O) TX: Turn Right

Xs=2 or 8 TL (Xs-O) TL: Turn Left

Xsffil or 3 MB (ls=O) MB: Move Backward

Xs-5 or 7 MF (Xs-O) MF: Move Forward

Xe-i " Xs>O '........ T_ (X3-O)

X6-1 " X4>O MF (X,=O)

X,>O TR (Xt=O)

X1<O TL (XlffiO

< Stimuli > < Action (stopping condition) >

Supression Signal

Figure 5. Obtained Plan Network for the

Example Problem

for "move forward until X4=0") must be per-

formed preferentially if X4=0 is not satisfied

when trying to start action "TR(XI=0)" or

"TL(XI=0)". When trying to start "MF(X,=0)

", if X3=0 is not satisfied, then the action

"TR(X3=0)" or "TL(X3=0)" is performed ac-

cording to the sign of X3. In this way, the

plan network takes into account the priority

relationships between actions and the anomaly

handling (such as separating from a obstacle

when a touch sensor finds it) as well. For ex-

ample, if the rover, during a certain action (say

A1), collides with an obstacle (Xr and Xs be-

come 1), which first triggers the action "write

obstacle position to the map (WO)" to change

Xs to 0, and then triggers "plan path (PP)"

to change Xr to 0. Then the system resumes

A1, and if another action with higher priority

is not triggered, action A1 is continued. Please

note that as a side effect of the WO and PP

actions, the states X1 ,,,X_ will be changed.

If the consequence of a certain action is found

inconsistent with the learned behavior network,

then the learning of the correct behavior net-

work is re-initiated for the specific action, which

also triggers the recompilation of the behav-

ior networks into the plan network. With this

technique, the system has the flexibility to adapt

itself to the change of the environment or the

system itself.

CONCLUSIONS

An architecture to manage the rover move-

ment plans under ill-structured, partially un-

known environments has been proposed. Sim-

ulation studies have indicated the effectiveness

of the architecture, and experiments using an

actual rover-type vehicle is now being performed.

REFERENCES

[1] Brooks, R.A.,1986. A Robust Layered

Control System for a Movile Robot, IEEE J.

Robotics and Automation, VoI.RA-2, April: 14-
23.

94

